

School of Collective Dynamics in High Energy Collisions June 7 - 11, 2010

Toward the QCD Equation of State

Reinhard Stock, Goethe University Frankfurt

Basics I Hydrodynamics, a warm-up

Equations of motion of relativistic hydrodynamics:

$$\partial_{\mu}T^{\mu\nu} = 0 \Leftrightarrow$$

local conservation of energy and momentum

the energy-momentum tensor

and $\partial_{\mu} j_{i}^{\mu} = 0 \Leftrightarrow$

conservation of charge *i* current

the charge current

charges = baryon number, electric charge, strangeness ...

Ideal Fluid

Assumption of an "ideal" (non-dissipative) fluid reduces computational effort:

$$T^{\mu\nu} = (\epsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu}$$
$$j^{\mu}_i = n_i u^{\mu}$$

 ϵ energy density p pressure density n_i number density for charge i u^{μ} flow 4-velocity

The 4-dimensional flow pattern is a 4-velocity field driven by the gradients of pressure and energy densities

In order to calculate the $n_i(T)$, it is important to note that local kinetic and chemical equilibrium are implied. Then, n_i is calculated from the Partition Function $\ln Z_i$

To solve the above equations, one needs the relation between p and $\ \epsilon$, the so-called EQUATION OF STATE (EOS)

Hydro in A+A collisions

To treat A+A collision dynamics as a hydrodynamical flow process, one has to:

Basics II Equation of State (EoS): $p(\epsilon)$

The EoS "inhales the physics" into hydrodynamics

Remember High School: Ideal one-atomic gas

 $\begin{array}{ll} pV = NkT & & \\ p = nkT & & n \text{ number density } \frac{N}{V} \end{array}$

nonrelativistic limit:

$$\bar{E}_{\rm kin} = \frac{3}{2}kT$$

$$nE=\epsilon$$
 the energy density

$$p=rac{2}{3}\epsilon$$
 classical ideal gas EoS, relativistic: $p=rac{1}{3}\epsilon$ $\epsilon={
m const}\cdot T^4$ Stefan Boltzmann

QCD Toy Model EoS

A "simple" gas of $\pi^{+,-,0}$ and of quarks (2 flavours) and gluons:

$$p_{\pi} = 3\frac{\pi^2}{90}T^4 \quad \text{for 3 pion charges and massless pions}$$

$$p_{qg} = \{2 \cdot 8 + \frac{7}{8}(3 \cdot 2 \cdot 2 \cdot 2)\}\frac{\pi^2}{90}T^4 - B(T)$$

$$p_{qg} = \{2 \cdot 8 + \frac{7}{8}(3 \cdot 2 \cdot 2 \cdot 2)\}\frac{\pi^2}{90}T^4 - B(T)$$

$$p_{qg} = \{2 \cdot 8 + \frac{7}{8}(3 \cdot 2 \cdot 2 \cdot 2)\}\frac{\pi^2}{90}T^4 - B(T)$$

$$p_{qg} = \{2 \cdot 8 + \frac{7}{8}(3 \cdot 2 \cdot 2 \cdot 2)\}\frac{\pi^2}{90}T^4 - B(T)$$

B is the *"bag pressure"* which expresses the difference of vacuum and inmedium QCD pressure

Result:

- A crossing at $T_C \approx 150 {\rm MeV}$ first order phase transition
- The stable phase is the one with the higher pressure
- Resulting "QCD" EoS: $\epsilon 3p = 4B(T)$

Result:

• Two phases separated by the latent heat jump at T_C • $\Delta \epsilon = \epsilon_{QGP}(T_C) - \epsilon_{\pi}(T_C)$ = 4B π T_c^4 T_c^4 T_c^4 T_c^4

And, in fact, lattice QCD shows this!

QCD trace anomaly implies massive partons in non-perturbative vacuum

Effect disappears at $T \geq 3T_C$

The term "trace anomaly": ${\rm tr}(T^{\mu
u}) = \epsilon - 3p = 0$ in ideal massless gas

Application to A+A collisions

- A hydrodynamic expansion evolution in a A+A collision follows a bundle of trajectories in $\{\epsilon, p, n_i\}$ space
- At $T > T_C$, one will employ a QGP EoS, starting at the end of initialization time
- At RHIC top energy, this time may be as "early" as $0.5 {
 m fm}/c$
- As ϵ falls below about 1GeV/fm^3
 - \rightarrow switch to hadronic, grand-canonical EoS

or

 \rightarrow terminate hydro expansion (Cooper-Frye), match to hadron-resonance transport

A trial EoS

Illustrates EoS matching between QGP and hadron resonance gas (Kolb, Sollfrank, Heinz PRC 62:054909,2000)

Strategy:

- Outline EoS-sensitve observables
- try out alternative EoS's
- unfortunately (?) involving different phase transition models

The elliptic flow anisotropy signal

Kolb and Heinz in QGP 3 (Hwa, ed.)

Time evolution in relativistic hydro: Initial space eccentricity ϵ_x in A+A collisions

```
VS.
```

generation of a momentum space anisotropy ϵ_p Measured by elliptic flow v_2

Flow established at $\tau \leq 2 \text{fm}/c$ at top RHIC energy **Primordial QGP signal!**

Elliptic Flow A QGP signal

R.A.Lacey and A.Taranenko: PoSCFRNC2006:021,2006 Elliptic flow scales with quark number!

